
Assembly & Machine Language - B. Nasihatkon
Spring 1398 (2019)

Homework 4
Amin Parchami, Kamran Akbar

After having a week off, Alice has just got a new homework and wants to
have a fresh start, so she asks you to help her get the full mark.

Your task is to complete the body of the find_primes function used
below. The function must be written in assembly.

file: main.c
#include <stdio.h>

void read_array(int a[],int n);
void print_array(int a[],int n);
// Assume that the read_array and print_array

// functions have already been implemented.

int find_primes(int inputs[],int primes[],int n);

int main(){
 int n;
 scanf("%d",&n);
 int inputs[n];
 read_array(inputs,n);
 int primes[n];

 //TODO: Implement find_primes in assembly.
 int count = find_primes(inputs,primes,n);

 print_array(primes,count);
 return 0;
}

K. N. Toosi University of Technology

Assembly & Machine Language - B. Nasihatkon
Spring 1398 (2019)

You must write your assembly code in two separate files:

● find.asm
● check.asm

In find.asm write the body of the find_primes function. The first
argument is the input array which contains positive integers. The second
argument is the output array. The last argument n is the size of the input
array, that is the number of integers in the input array. The function must
find the prime numbers from the input array and store them in the output
array. Besides, it must return the number of primes found (size of the
output array) as the return value.

Obviously, the function find_primes needs to check if an integer is
prime. To do so, you must write a separate function called is_prime in
assembly. This function receives an integer as argument and returns 1 or 0
depending on whether or not the input argument is prime. This assembly
function must be written in a separate file called “check.asm”.

You must also create a Makefile. It must assemble, compile and link the
input files and create a 32-bit executable named run.out.

Input:
The first line of input contains a positive integer between 1 and 100 (call it
n). This is the number of positive integers to be checked (the size of the
input array). The second line contains n positive integers.

Output:
The output contains the list of the prime numbers from the input numbers in
the same order.

K. N. Toosi University of Technology

Assembly & Machine Language - B. Nasihatkon
Spring 1398 (2019)

Notice that the C code in main.c takes care of getting the input and
producing the output.

Note that:

● You must observe the default C calling conventions for both
functions find_primes and is_prime.

● Your code must work with the main.c file provided with the
homework. Do not change the C file.

● You must not print extra outputs. Reading and printing the numbers is
done by the given C file and you must not read or print any numbers
in your assembly files. If you do so (for the purpose of debugging,
etc.) delete them before submission.

● Your code must work without the asm_io.asm, driver.c and other
function provided by the book. If you link your code against asm_io.o
for debugging, make sure that remove this dependency before the
submission.

● Your code must work under a Linux platform.

Please upload only the following files on courses.kntu.ac.ir:

● find.asm
● check.asm
● Makefile

Your code will be checked for similarity. In the case of cheating, the student
will receive a negative point. It is your responsibility to protect your code.

Example :
Input:
7
10 2 4 1 11 9 17

K. N. Toosi University of Technology

https://courses.kntu.ac.ir/

Assembly & Machine Language - B. Nasihatkon
Spring 1398 (2019)

Output:
2 11 17

Solution:
2, 11, and 17 are the prime numbers from the given series.

Extra Credit!
Write the 64-bit version of the above (beside the 32-bit version). You must observe all
the 64-bit (linux) calling conventions for both functions. The 64-bit version must be
submitted in a separate directory.

K. N. Toosi University of Technology

